If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3y^2-16y+75=0
a = -3; b = -16; c = +75;
Δ = b2-4ac
Δ = -162-4·(-3)·75
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-34}{2*-3}=\frac{-18}{-6} =+3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+34}{2*-3}=\frac{50}{-6} =-8+1/3 $
| 8x−9−4x=25 | | 9g-22=4g+18 | | 5x=20000 | | 8x‐2(x+9)=x+47 | | 5(4x-5)=-90 | | 10x+12=12x-10 | | -3(1+6n)+3n=87 | | `6x+8-2x=14+10x` | | 3x-16-5x=49 | | 3x-16x=40 | | (x+6)(x+5)=(x+2)(x-5) | | -5p-8=1+5p-9 | | x^2-((3/2)x)^2=4 | | 3x=131 | | x2=49/69 | | x2=49169 | | 13(17x-23)^2=156 | | 25+12x=6x+4 | | 21=-6x | | -3-4(7-4x)=81 | | 4+13(17x-23)^2=160 | | 5m-58=0 | | 4(v-4)=-5v-25 | | 7u+39=3(u+9) | | -6u-6=-3u+15 | | -8=~3+m/3 | | 8n−8=60 | | 5x+11=35-7x | | 3+6(n+8)=93 | | 12=2l+1 | | D=9/4(m-35) | | -100=-6(-2r+4)-4 |